Dynamic and Thermal Properties of Aluminum Alloy A356/Silicon Carbide Hollow Particle Syntactic Foams

نویسندگان

  • James Cox
  • Dung D. Luong
  • Nikhil Gupta
  • Oliver M. Strbik
  • Kyu Cho
  • Hugo F. Lopez
چکیده

Aluminum alloy A356 matrix syntactic foams filled with SiC hollow particles (SiCHP) are studied in the present work. Two compositions of syntactic foams are studied for quasi-static and high strain rate compression. In addition, dynamic mechanical analysis is conducted to study the temperature dependent energy dissipation and damping capabilities of these materials. The thermal characterization includes study of the coefficient of thermal expansion (CTE). A356/SiCHP syntactic foams are not strain rate sensitive as the compressive strength displayed little variation between the tested strain rates of 0.001–2100 s. Microscopic analysis of the high strain rate compression tested specimens showed that the fracture is initiated by the failure of hollow particles at the onset of the plastic deformation region. This is followed by plastic deformation of the matrix material and further crushing of particles. The syntactic foams showed decrease in storage modulus with increasing temperature and the trend was nearly linear up to 500 °C. The alloy shows a similar behavior at low temperature but the decrease in storage modulus increases sharply over 375 °C. The loss modulus is very small for the tested materials OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental study of fracture mechanics in the aluminum matrix composites containing Fifteen percent silicon carbide particles

In this investigation ‚the fracture toughness of A356 containing15%SiC composite was studied. Al/SiC composites have been considered because of their mechanical and erosion properties .Low fracture toughness in Al/SiC as compared with Aluminium alloys is one of its disadvantage. In this study at first A356 alloy was melted in a smelting electrical furnace then poured into the mould. A356-15% Si...

متن کامل

Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications

Potential of widespread industrial applications of magnesium has been realized in recent years. A variety of magnesium alloy matrix composites are now being studied for mechanical properties. Since magnesium is the lightest structural metal, it can replace aluminum in existing applications for further weight savings. This review presents an overview of hollow particle filled magnesium matrix sy...

متن کامل

EFFECT OF T6 HEAT TREATMENT ON MECHANICAL PROPERTIES OF CERAMIC REINFORCED CASTED ALUMINUM ALLOY

Aluminium base alloy (Al-Cu-Si) was reinforced with silicon carbide (SiC) particles, in various percentage compositions from 0-20 wt%. Silicon carbide particle size of 20µm was selected. The molten slurry of SiC reinforced base aluminium metal was casted through green and dry sand casting methods and solidification process was carried out under ambient conditions. A selected population...

متن کامل

A Review of Thermal Conductivity of Polymer Matrix Syntactic Foams—Effect of Hollow Particle Wall Thickness and Volume Fraction

Hollow-particle-filled composites called syntactic foams are lightweight particulate composites that are useful in weight-sensitive applications such as aerospace and marine structures. Extensive literature is now available on the mechanical properties of syntactic foams. The upcoming applications for syntactic foams in aerospace structures require understanding of their thermal properties, suc...

متن کامل

Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams

Metal matrix syntactic foams have been fabricated via counter-gravity infiltration of a packed bed of recycled expanded glass particles (EG) with A356 aluminum alloy. Particle shrinkage was studied and has been utilized to increase the particles' strength and tailor the mechanical properties of the expanded glass/metal syntactic foam (EG-MSF). The crushing strength of particles could be doubled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014